
-1-

Image and Volume Registration with AFNI

• Goal: bring images collected with different methods and at different times into
spatial alignment

• Facilitates comparison of data on a voxel-by-voxel basis
 Functional time series data will be less contaminated by artifacts due to

subject movement
 Can compare results across scanning sessions once images are properly

registered
• Most (all?) image registration methods now in use do pair-wise alignment:

 Given a base image J(x) and target (or source) image I(x), find a geometrical
transformation T[x] so that I(T[x]) ≈ J(x)

 T[x] will depend on some parameters
➥ Goal is to find the parameters that make the transformed I a ‘best fit’ to J

 To register an entire time series, each volume In(x) is aligned to J(x) with its
own transformation Tn[x], for n = 0, 1, …
➥ Result is time series In(Tn[x]) for n=0, 1, …
➥ User must choose base image J(x)

-2-

• Most image registration methods make 3 algorithmic choices:
 How to measure mismatch E (for error) between I(T[x]) and J(x)?

➥ Or … How to measure goodness of fit between I(T[x]) and J(x)?
➭ E(parameters) ≡ –Goodness(parameters)

 How to adjust parameters of T[x] to minimize E?
 How to interpolate I(T[x]) to the J(x) grid?

➥ So can compare voxel intensities directly
• AFNI 3dvolreg program matches images by grayscale (intensity) values

 E = (weighted) sum of squares differences = Σx w(x) · {I(T[x]) - J(x)}2

➥ Only useful for registering ‘like images’:
➭ Good for SPGRSPGR, EPIEPI, but notnot good for SPGREPI

 Parameters in T[x] are adjusted by “gradient descent”
➥ Fast, but customized for the least squares E

 Several interpolation methods are available:
➥ Default method is Fourier interpolation
➥ Polynomials of order 1, 3, 5, 7 (linear, cubic, quintic, and heptic)

 This program is designed to run very fast for EPIEPI registration with small
movements — good for FMRI purposes

• Newer program 3dAllineate uses more complicated definitions of E
 Will discuss this software later in the presentation

-3-

• AFNI program 3dvolreg is for aligning 3D volumes by rigid movements
 T[x] has 6 parameters:

➥ Shifts along x-, y-, and z-axes; Rotations about x-, y-, and z-axes
 Generically useful for intra- and inter-session alignment
 Motions that occur within a single TR (2-3 s) cannot be corrected this way,

since method assumes rigid movement of the entire volume
• AFNI program 2dImReg is for aligning 2D slices

 T[x] has 3 parameters for each slice in volume:
➥ Shift along x-, y-axes; Rotation about z-axis
➥ No out of slice plane shifts or rotations!

 Useful for sagittal EPI scans where dominant subject movement is ‘nodding’
motion that may be faster than TR

 It is possible and sometimes even useful to run 2dImReg to clean up sagittal
nodding motion, followed by 3dvolreg to deal with out-of-slice motion

• Hybrid ‘slice-into-volume’ registration:
 Put each separate 2D image slice into the target volume with its own 6

movement parameters (3 out-of-plane as well as 3 in-plane)
 Has been attempted, but the results are not much better than volume

registration; method often fails on slices near edge of brain
➥ We do not have a program to do this

-4-

• Intra-session registration example:
3dvolreg -base 4 -heptic -zpad 4 \

 -prefix fred1_epi_vr \
 -1Dfile fred1_vr_dfile.1D \
 fred1_epi+orig

 -base 4 ⇒ Selects sub-brick #4 of dataset fred1_epi+orig as base image J(x)
 -heptic ⇒ Use 7th order polynomial interpolation (my personal favorite)
 -zpad 4 ⇒ Pad each target image, I(x), with layers of zero voxels 4 deep on each

face prior to shift/rotation, then strip them off afterwards (before output)
➥ Zero padding is particularly desirable for -Fourier interpolation
➥ Is also good to use for polynomial methods, since if there are large rotations,

some data may get ‘lost’ when no zero padding if used (due to the 4-way shift
algorithm used for very fast rotation of 3D volume data)

 -prefix fred1_epi_vr ⇒ Save output dataset into a new dataset with the
given prefix name (e.g., fred1_epi_vr+orig)

 -1Dfile fred1_vr_dfile.1D ⇒ Save estimated movement parameters into a
1D (i.e., text) file with the given name
➥ Movement parameters can be plotted with command
1dplot -volreg -dx 5 -xlabel Time fred1_vr_dfile.1D

Input dataset name

-5-
 Can now register second dataset from same session:
3dvolreg -base ‘fred1_epi+orig[4]’ -heptic -zpad 4 \

 -prefix fred2_epi_vr -1Dfile fred2_vr_dfile.1D \
 fred2_epi+orig

➥ Note base is from different dataset (fred1_epi+orig) than input
(fred2_epi+orig)
➭ Aligning all EPI volumes from session to EPI closest in time to SPGR

• 1dplot -volreg -dx 5 -xlabel Time fred2_vr_dfile.1D

➥ Note motion peaks at time ≈ 160s: subject jerked head up at that time

-6-

 Examination of time series fred2_epi+orig and fred2_epi_vr_+orig
shows that head movement up and down happened within about 1 TR
interval
➥ Assumption of rigid motion of 3D volumes is not good for this case
➥ Can do 2D slice-wise registration with command
2dImReg -input fred2_epi+orig \
 -basefile fred1_epi+orig \
 -base 4 -prefix fred2_epi_2Dreg

 Graphs of a single voxel time series near
the edge of the brain:
➥ Top = slice-wise alignment
➥ Middle = volume-wise adjustment
➥ Bottom = no alignment

 For this example, 2dImReg appears to
produce better results. This is because
most of the motion is ‘head nodding’ and
the acquisition is sagittal

 You should also use AFNI to scroll through
the images (using the Index control)
during the period of pronounced
movement
 Helps see if registration fixed problems

fred1_epi registered
with 2dImReg

fred1_epi registered
with 3dvolreg

fred1_epi unregistered

-7-

• Intra-subject, inter-session registration (for multi-day studies on same subject)
 Longitudinal or learning studies; re-use of cortical surface models
 Transformation between sessions is calculated by registering high-resolution

anatomicals from each session

➥ to3d defines defines
relationship between EPI
and SPGR in each session

➥ 3dvolreg computes
relationship between
sessions

➥ So can transform EPI from
session 2 to orientation of
session 1

 Issues in inter-session registration:
➥ Subject’s head will be positioned differently (in orientation and location)

➭ xyz-coordinates and anatomy don’t correspond
➥ Anatomical coverage of EPI slices will differ between sessions
➥ Geometrical relation between EPI and SPGR differs between session
➥ Slice thickness may vary between sessions (try not to do this, OK?)

-8-

• Anatomical coverage differs

 At acquisition:
 Day 2 is rotated

relative to Day 1

 After rotation to
same orientation,
then clipping to
Day 2 xyz-grid

-9-

 Another problem: rotation
occurs around center of
individual datasets

-10-

 Solutions to these problems:
➥ Add appropriate shift to E2 on top of rotation

➭ Allow for xyz shifts between days (E1-E2), and center shifts
between EPI and SPGR (E1-S1 and E2-S2)

➥ Pad EPI datasets with extra slices of zeros so that aligned datasets
can fully contain all data from all sessions

➥ Zero padding of a dataset can be done in to3d (at dataset creation
time), or later using 3dZeropad

➥ 3dvolreg and 3drotate can zero pad to make the output match a
“grid parent” dataset in size and location

-11-

 Recipe for intra-subject S2-to-S1 transformation:
1. Compute S2-to-S1 transformation:

3dvolreg -twopass -zpad 4 -base S1+orig \
 -prefix S2reg S2+orig

➥ Rotation/shift parameters are saved in S2reg+orig.HEAD
2. If not done before (e.g., in to3d), zero pad E1 datasets:

3dZeropad -z 4 -prefix E1pad E1+orig

3. Register E1 datasets within the session:
3dvolreg -base ‘E1pad+orig[4]’ -prefix E1reg \

 E1pad+orig

4. Register E2 datasets within the session, at the same time executing
larger rotation/shift to session 1 coordinates that were saved in
S2reg+orig.HEAD:
3dvolreg -base ‘E2+orig[4]’ \
 -rotparent S2reg+orig \
 -gridparent E1reg+orig \
 -prefix E2reg E2reg+orig

➥ -rotparent tells where the inter-session transformation comes from
➥ -gridparent defines the output grid location/size of new dataset

➭ Output dataset will be shifted and zero padded as needed to lie on
top of E1reg+orig

• These options put the aligned
• E2reg into the same coordinates
 and grid as E1reg

• -twopass allows
 for larger motions

-12-

 Recipe above does not address problem of having different slice thickness in
datasets of the same type (EPI and/or SPGR) in different sessions
➥ Best solution: pay attention when you are scanning, and always use the

same slice thickness for the same type of image
➥ OK solution: use 3dZregrid to linearly interpolate datasets to a new slice

thickness
 Recipe above does not address issues of slice-dependent time offsets stored

in data header from to3d (e.g., ‘alt+z’)
➥ After interpolation to a rotated grid, voxel values can no longer be said to

come from a particular time offset, since data from different slices will have
been combined

➥ Before doing this spatial interpolation, it makes sense to time-shift dataset
to a common temporal origin

➥ Time shifting can be done with program 3dTshift
➭ Or by using the -tshift option in 3dvolreg, which first does the

time shift to a common temporal origin, then does the 3D spatial
registration

• Further reading at the AFNI web site
 File README.registration (plain text) has more detailed instructions and

explanations about usage of 3dvolreg
 File regnotes.pdf has some background information on issues and methods

used in FMRI registration packages

-13-

Real-Time 3D Image Registration
• The image alignment method using in 3dvolreg is also built into the

AFNI real-time image acquisition plugin
 Invoke by command afni -rt
 Then use Define Datamode → Plugins → RT Options

to control the operation of real-time (RT) image acquisition
• Images (2D or 3D arrays of numbers) can be sent into AFNI through a

TCP/IP socket
 See the program rtfeedme.c for sample of how to connect to

AFNI and send the data
➥ Also see file README.realtime for lots of details

 2D images will be assembled into 3D volumes = AFNI sub-bricks
• Real-time plugin can also do 3D registration when each 3D volume is

finished, and graph the movement parameters in real-time
 Useful for seeing if the subject in the scanner is moving his head too

much
➥ If you see too much movement, telling the subject will usually

help

-14-

• Screen capture from
example of real-time image
acquisition and registration

• Images and time series
graphs can be viewed as
data comes in

• Graphs of movement
parameters

-15-

New Program: 3dAllineate
• 3dAllineate can be used align images from different methods

 For example, to align EPI data to SPGR / MPRAGE:
➥ Run 3dSkullStrip on the SPGR dataset so that it will be more

like the EPI dataset (which will have the skull fat suppressed)
➥ Use 3dAllineate to align the EPI volume(s) to the skull-

stripped SPGR volume
➥ Only works well if the EPI volume covers most of the brain

• Program is slower than 3dvolreg
 Allows more general spatial transformations

➥ At present, 12 parameter affine: T[x] = Ax+b
 Uses a more general-purpose optimization library than gradient

descent
➥ The NEWUOA package from Michael Powell at Oxford
➥ Less efficient than a customized gradient descent formulation

➭ But can be used in more situations
➭ And is easier to put in the computer program, since there is

no need to compute the derivatives of the cost function E

-16-

• 3dAllineate has several different “cost” functions (E) available
 leastsq = Least Squares (like 3dvolreg)
 mutualinfo = Mutual Information
 norm_mutualinfo = Normalized Mutual Information
 hellinger = Hellinger Metric [the defaultdefault cost function]
 corrratio_mul = Correlation ratio (symmetrized by multiplication)
 corratio_add = Correlation ratio (symmetrized by addition)
 corratio_uns = Correlation ratio (unsymmetric)

• All cost functions, except “leastsq ”, are based on the joint histogram
between images I(T[x]) and J(x)
 The goal is to make I(T[x]) “predictable” as possible given J(x), as

the parameters that define T[x] are varied
 The different cost functions use different ideas of “predictable”
 Perfect predictability = knowing value of J, can calculate value of I

exactly
➥ Least squares: I = α⋅J+β for some constants α and β
➥ Joint histogram of I and J is “simple” in the idealized case of

perfect predictability

-17-

• Histogram cartoons:

J

I

J

I

J

I

• J not useful in
predicting I

• I can be accurately
predicted from J with
a linear formula:
 -leastsq is OK

• I can be accurately
predicted from J, but
nonlinearly:
 -leastsq is BAD

-18-

• Actual histograms from a registration example
 J(x) = 3dSkullStrip-ed MPRAGE I(x) = EPI volume

J

I

• Before alignment

J

I

• After alignment
(using -mutualinfo)

-19-

• grayscale underlay = J(x) = 3dSkullStrip-ed MPRAGE
• color overlay = I(x) = EPI volume

• Before alignment • After alignment
(using -mutualinfo)

-20-

• Other 3dAllineate capabilities:
 Save transformation parameters with option -1Dfile in one

program run
➥ Re-use them in a second program run on another input

dataset with option -1Dapply
 Interpolation: linear (polynomial order = 1) during alignment

➥ To produce output dataset: polynomials of order 1, 3, or 5
• Algorithm details:

 Initial alignment starting with many sets of transformation
parameters, using only a limited number of points from
smoothed images

 The best (smallest E) sets of parameters are further refined
using more points from the images and less blurring

 This continues until the final stage, where many points from
the images and no blurring is used

-21-

• The future for 3dAllineate:
 Allow alignment to use manually placed control points (on both

images) and the image data
➥ Will be useful for aligning highly distorted images or images with

severe shading
➥ Current AFNI program 3dTagalign allows registration with

control points only
 Nonlinear spatial transformations

➥ For correcting distortions of EPI (relative to MPRAGE or SPGR) due
to magnetic field inhomogeneity

➥ For improving inter-subject brain alignment (Talairach)
 Investigate the use of local computations of E (in a set of overlapping

regions covering the images) and using the sum of these local E’s as
the cost function
➥ May be useful when relationship between I and J image

intensities is spatially dependent
➭ RF shading and/or Differing MRI contrasts

 Save warp parameters in dataset headers for re-use

-22-

3dAllineate3dAllineate::
More than you want toMore than you want to

knowknow

-23- Algorithmic Features
• Uses Powell’s NEWUOA software for minimization of general cost function
• Lengthy search for initial transform parameters if two passes of registration

are turned on [which is the default]
 Random and grid search through hundreds of parameter sets for 15 good

(low cost) parameter sets
 Optimize a little bit from each ‘good’ set, using blurred images

➥ Blurring the images means that small details won’t prevent a match
 Keep best 4 of these parameter sets, and optimize them some more

[keeping 4 sets is the default for -twobest option]
➥ Amount of blurring is reduced in several stages, followed by re-

optimization of the transformation parameter sets on these less
blurred images

➥ -twofirst does this for first sub-brick, then uses the best parameter
sets from the first sub-brick as the starting point for the rest of the sub-
bricks [the default]

 Use best 1 of these parameter sets as starting point for fine (un-blurred)
parameter optimization
➥ The slowest part of the program

-24-

Algorithmic Features
• Goal is to find parameter set w such that E[J(x) , I(T(x,w))] is small

 T(x,w) = spatial transformation of x given w
 J() = base image, I() = target image, E[] = cost function

• For each x in base image space, compute T(x,w) and then interpolate I() at
those points
 For speed, program doesn’t use all points in J(), just a scattered

collection of them, selected from an automatically generated mask
➥ Mask can be turned off with -noauto option
➥ At early stages, only a small collection of points [default=23456] is

used when computing E[]
➥ At later stages, more points are used, for higher accuracy

➭ Recall that each stage is less blurred than the previous stages
 Large fraction of CPU time is spent in interpolation of image I() over the

collection of points used to compute E[]

-25-

Cost Functions
• Except for least squares (actually, ls minimizes E = 1.0 – Pearson

correlation coefficient), all cost functions are computed from 2D joint
histogram of J(x) and I(T(x,w))
 Start and final histograms can be saved using hidden option -savehist

Before After

Base image

Source
image

Source image
= rotated copy
of Base image

-26-

Histogram Based Cost Functions

• Goal is to make 2D histogram become ‘simple’ in some sense, as a
measurement of ‘predictability’ between J(x) and I(T(x,w))

• Entropy H() of a histogram (finite number of bins):
 {pi} = probabilities of index i occuring
 H({pi}) = –Σi pi log2(pi) > 0
 H({pi}) = Number of bits needed to encode a single value randomly

drawn from the probabilities {pi}
 Smaller entropy H means the values are ‘simpler’ to encode

➥ Largest H is for uniform histogram (all pi equal)

-27- Mutual Information
• Entropy of 2D histogram

 H({rij}) = –Sij rij log2(rij)
 Number of bits needed to encode value pairs (i,j)

• Mutual Information between two distributions
 Marginal (1D) histograms {pi} and {qj}
 MI = H({pi}) + H({qj}) - H({rij})
 Number of bits required to encode 2 values separately minus

number of bits required to encode them together (as a pair)
 If 2D histogram is independent (rij= pi×qj) then MI = 0 = no gain from

joint encoding
• 3dAllineate minimizes E[J,I] = –MI(J,I) with -cost mi

-28-

Normalized MI
• NMI = H({rij}) ⁄ [H({pi}) + H({qj})]

 Ratio of number of bits to encode value pair divided by number of
bits to encode two values separately

 Minimize NMI with -cost nmi
• Some say NMI is more robust for registration than MI, since MI can be

large when there is no overlap between the two images

NO
overlap

100%
overlap

BAD
overlap

-29-

Hellinger Metric
• MI can be thought of as measuring a ‘distance’ between two 2D

histograms: the joint distribution {rij} and the product distribution
{pi×qj}
 MI is not a ‘true’ distance: it doesn’t satisfy triangle inequality

d(a,b)+d(b,c) > d(a,c)
• Hellinger metric is a true distance in distribution “space”:

HM = Σij [√rij – √(pi×qj)]2

 3dAllineate minimizes –HM with -cost hel
 This is the default cost function a

c

b

-30-

Correlation Ratio
• Given 2 (non-independent) random variables x and y

 Exp[y|x] is the expected value (mean) of y for a
fixed value of x
➥ Exp[a|b] ≡ Average value of ‘a’, given value of ‘b’

 Var(y|x) is the variance of y when x is fixed =
amount of uncertainty about value of y when we
know x
➥ v(x) ≡ Var(y|x) is a function of x only x

y

• CR(x,y) ≡ 1 – Exp[v(x)] ⁄ Var(y)
• Relative reduction in uncertainty about value of y when x is known;
large CR means Exp[y|x] is a good prediction of the value of y given the
value of x

• Does not say that Exp[x|y] is a good prediction of the x given y
• CR(x,y) is a generalization of the Pearson correlation coefficient, which
assumes that Exp[y|x] = α⋅x+β

-31-

3dAllineate’s Symmetrical CR
• First attempt to use CR in 3dAllineate didn’t give good results
• Note asymmetry: CR(x,y) ≠ CR(y,x)
• 3dAllineate now offers two different symmetric CR cost functions:

 Compute both unsymmetric CR(x,y) and CR(y,x), then combine by
Multiplying or Adding:

 CRm(x,y) = 1 – [Exp(v(x))⋅Exp(v(y))] ⁄ [Var(y) ⋅ Var(x)]
 = CR(x,y) + CR(y,x) – CR(x,y) ⋅ CR(y,x)

 CRa(x,y) = 1 – 1/2 [Exp(v(x)) ⁄ Var(y)] – 1/2 [Exp(v(y)) ⁄ Var(x)]
 = [CR(x,y) + CR(y,x)] ⁄ 2

 These work better than CR(J,I) in my test problems
• If Exp[y|x] can be used to predict y and/or Exp[x|y] can be used to

predict x, then crM(x,y) will be large (close to 1)
• 3dAllineate minimizes 1 – CRm(J,I) with option -cost crM
• 3dAllineate minimizes 1 – CRa(J,I) with option -cost crA
• 3dAllineate minimizes 1 – CR(J,I) with option -cost crU

-32-

Test: Monkey EPI - Anat

6 DOF
CRm

6 DOF
NMI

-33-

6 DOF
HEL

6 DOF
MI

Test: Monkey EPI - Anat

-34-

11 DOF
CRm

11 DOF
NMI

Test: Monkey EPI - Anat

-35-

11 DOF
HEL

11 DOF
MI

Test: Monkey EPI - Anat

